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The specularity parameter used to describe the size effects in the electrical and galvano-
magnetic transport properties of thin samples may depend on the angle of incidence of the elec-
trons with the surface. It is difficult to determine this angular dependence experimentally be-
cause of the lack of reproducibility of surface preparation. A methodis proposed to accomplish
this with a single sample by means of a study of the details of the magnetomorphic oscillations
(MMO) in the transverse galvanomagnetic properties. The magnetic field dependence of the
amplitude of these oscillations contains information about the specularity parameter and its
angular variation, especially for electrons normally incident to the surface. Existing data
for Cd are analyzed from this standpoint. The higher-order terms introduced in this analysis
are found to be responsible for the anomalous behavior of the MMO in Cd. The results are
consistent with a highly anisotropic specularity parameter which may be caused by a surface-

damage layer.

I. INTRODUCTION
A. Surface Scattering of Conduction Electrons

The scattering of conduction electrons at the
surface of a metal has generally been studied by
means of the size effects in the transport proper-
ties of thin films. In the theories of Fuchs! and
Sondheimer, ? the surface boundary condition has
been incorporated by means of the specularity
parameter p, which is defined as the probability
an electron incident upon the surface will be scat-
tered specularly. More recent theories®* have
indicated that the specularity parameter, if it is a
reasonable description, is likely to be dependent
on the angle of incidence of the electrons‘with the
surface. The angular dependence can cause con-
siderable alteration in the thickness dependence of
the size effects from predictions based on a con-
stant parameter.* Until the details of the surface
scattering of electrons is understood the use of
transport properties in thin films as a probe of bulk
and surface properties will not reach its full po-
tential.

B. Experimental Difficulties

So far there has apparently been no reliable quan-
titative experimental method developed for deter-
mining the angular dependence of p. One can mea-
sure the electrical resistivity in a thin film as a
function of the thickness—to—mean-free-path ratio
to try to determine this dependence. This ratio
can be varied by changing either the thickness, or
the mean free path through the temperature depen-
dence. However, both these methods lead to diffi-
culties in interpretation. In the former, either a
new sample must be prepared or the thickness
changed by adding or removing material. Aside
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from changes in the bulk properties it is very diffi-
cult to guarantee that the surface at each thickness
remains the same. Since the transport properties
are sensitive to the specularity parameter, which
may in turn be sensitive to surface preparation,
the specularity parameter could not be controlled.
In the latter method, the same sample could be
used. However, an adequate model for the direc-
tional and temperature dependence of the mean free
path is hard to obtain because of sensitivity to static
imperfections, especially at lower temperatures.
Other experimental measurements are affected
by surface scattering. These include the anomalous
skin effect, cyclotron resonance, and microwave
absorption in weak magnetic fields.® The theory
of these effects is fairly complicated and apparently
has only been worked out for a constant specularity

parameter for the first two. The theory, in the
last effect, is relatively crude with respect to sur-
face scattering, and other effects may dominate

the line widths. However, recent work® has shown
that correlation to surface preparation is attainable,
with at least qualitative agreement with the pre-
dicted effect of surface roughness.*

Because of these difficulties in measuring the
angular dependence of p, it would be desirable to
have a method based on the relatively sensitive
and theoretically simple transport size effects,
but involving only a single sample, in which the
bulk and, more importantly, the surface properties
remain constant. We describe here how informa-
tion can be obtained about the angular dependence
of p under these conditions by studying the magne-
tomorphic oscillations (MMO) in the galvanomag-
netic transport properties of conductors. As an
illustration of the method, some existing experi-
mental data are analyzed by this approach.
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II. THEORY

The MMO were first predicted by Sondheimer., ?
Their relation to Fermi surface curvature has been
studied by Gurevich,” Generally, diffuse surface
scattering has been assumed. Recently, Mackey
and Sybert® (MS) pointed out that the effect of partial
specularity is to produce harmonics of the funda-
mental (Sondheimer) MMO. Physically, this may
be visualized as equivalent to increasing the effec-
tive thickness of the sample by integral multiples
of the actual thickness for those electrons which
are not diffusely scattered on the first reflection.
The relative amplitudes of the harmonics may be
used to determine p, if it is assumed to be con~
stant. Schwarz® has reported observing the second
harmonic in Cd.

Here we extend the approach of MS to the case
where the specularity parameter depends on the
angle. First, the conductivity tensor is calculated
using a simple Fermi-surface geometry. This is
done in two ways, each giving different views of the
effect of p’s angular dependence on the MMO. The
relative advantages and drawbacks of each view are
discussed. The relation between the magnetic field
dependence of the resistivity-tensor components and
the angular dependence of p is given.

A. Discrete and Continuous Spectrum of the MMO

For this view of the problem we consider the
simple parabolic~band model, in which each band
of holes or electrons is in the “standard form?”!°
and is assumed to have a constant scalar effective
mass m. The size effects in the galvanomagnetic
conductivities in the Sondheimer model may be
written in the complex form

0,= 0y, +10y,= 03(B)[1+1],

(1a)

I= _2—1 | adw (W = w1 - pw)] (1 ~ e=*9)
x[1 - plw)e™] , (1b)
02(B)= ofy (B) +io}(B)= 01~ dwr]/[1+ (@r)], (lo)
o= ne?r/m. (1d)

Here the Sondheimer model has been made more
general with the inclusion of the dependence of p
on angle 6 with the surface normal via w=1/cosé.
The relaxation time is 7, the number density of
carriers is #, and the cyclotron angular frequency
is w=eB/m. The quantity s =K +4B, where K=1¢/1,
t being the sample thickness and / the bulk mean
free path, and B=t/7, 7 being the extremal orbit
cyclotron radius v/w, with v the velocity. The
quantities » and B are signed, being positive (nega-
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tive) for holes (electrons). In the following they
will be treated as positive quantities, for conve-
nience, unless specific reference is made to elec-
trons, The zero superscript refers to bulk conduc-
tivities, More generally, these conductivities may
be summed over bands if interband scattering is
not too important.

The appearance of the MMO, including harmonics,
can be shown in the conductivities as in MS by ex-
panding the quantity [1 - p(w)e~*¢]"! in a geometric
series. The expression I which contains all the
size effects becomes

I=sT+21q, (2a)

q=1

©

dw W= - w1 ~ p@w)],

I=-2

2s J, (2b)

Logs [ - w1 = p) By e,

q=1,2,3,... (2¢)
The term I is monotonic in magnetic field and the
integrands of I, contain oscillations e*'**, The
effect of the dependence of p on angle can be shown
by rewriting Eq. (2¢). The result, shown in Ap-

pendix A, is

I, =2—?; (Fq(l) 8(wqs)uy + [ Cdw 8(qu)%@) ,
(3a)

Fyw)=[1 - p)Bpe-* (), (3b)

Swz) = w'zEa(wZ) - w‘4E5(wz), (3¢c)

where E,(wz) is the exponential integral.!! The
reason for writing I, in this form is that the second
term of Eq. (3a) contains the effect of an angle depen-
dent p. The asymptotic form of the exponential
integrals!! shows that the function defined in (3c)
contains the oscillations e-*®*, From this view-
point the magnetoconductivity size effect appears
as having three kinds of field-dependent contribu-
tions. The purely monotonic part is 7. The first
part of (3a) substituted in (2a) gives a series of
harmonics with monotonically field-dependent am-
plitudes. This may be viewed as a discrele spec-
trum of the MMO. Finally, the second term of
(3a) may be thought of as a continuous spectrum of
the MMO. From this viewpoint, the presence of
a continuous spectrum would indicate the presence
of angular variation of p and give a measure of this
variation.

Although this viewpoint has the advantage of sep-
arating out the effect of angular variation of sur-
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face scattering, it has the drawbacks of being ex-
pressed in terms of an integral and, in the present
case, being limited to the parabolic model.

B. Inverse Field Expansion of the MMO

Here we consider an alternative formulation. It
essentially expresses the oscillatory magnetocon-
ductivity as a power series in B! multiplying the
oscillatory terms. By looking at the approach to
high fields, the amplitude of the leading terms can
be related to the angular dependence of p for limit-
ing point electrons.

Grenier, Efferson, and Reynolds (GER), 12 as
well as MS, have used this method to the lowest
order in B, We consider here also higher-order
terms, since these lead to the angular dependence
of p.

MS use a geometry developed by GER in which
the Fermi surface is a figure of rotation about the
magnetic field and sample-surface normal and has
a reflection plane parallel to the sample surface.
The parabolic-band model will be used here, al-
though the method can easily be extended to the
geometry of GER.

We expand the quantity

©

=21,
o=l
as a series in 8. If one lumps all quantities in
Eq. (2c) other than F () e"** into the function
G,(w), integration by parts yields [noting G,() and
all its derivatives vanish at w =]

2 | awF,w)G,uw)eiev
1 Jy

o © r-1
=2 e BY (igp)-T (;;;1 [ Fw) Gq(w)]) )

q¢=1 r=1 w=1
23 e {GgR) 2 F (1) Gl(1)
q=1

+(igB) [ F, (D) GY () +2F,(1) GIW)]+-+-F  (4)

(primes devoting d/dw). The last form occurs be-
cause G,(1)=0. The quantity F,(), as defined be-
fore, describes the surface scattering, whereas
the function G,(w) depends only on quantities like
Fermi surface, sample geometry, and magnetic
field, but not on surface scattering.

In order to get them in a useful form the entire
conductivities should be expanded in powers of B,
In general, the resulting expressions are quite
complicated and the effects of p and its derivative
come in, mixed together at the same order. How-
ever, a considerable simplification results by mak-
ing an assumption which is in accordance with

readily attainable experimental parameters. We
will use the parameters defined in the parabolic-
band model, although the results apply to the more
general case with modifications in details. A use-
ful identity is

wr=B/K=1/r . (5)
We will consider the region in which
wT> ﬁ >1 . (6)

This is seen to require K< 1, Ideally, w T should
be as large as possible and 8 large enough to see

a few oscillations, K being as small as possible.
[These values are obtainable in high-purity crys-
tals at liquid-helium temperatures, in high-field
conventional or superconducting electromagnets.
Typical values attainable are /=1 mm, w710 at
10 kG, and £~100 p. This gives K~10, B=~1 at
this field. At higher fields (~100 kG), still thinner
samples could be used. Thinner samples are gen-
erally advantageous because of the ¢*/’ dependence
of the voltages of interest.] The bulk part of &
depends only on wr. The size-dependent part of

o depends [Eq. (2b)] only on wrand 8, since

s=K+iB=ip[1~i(wn™].

The expansion may be expressed in terms of power
series in (w7 and in B}. We will take the atti-
tude that the condition (6), with K sufficiently
small, allows keeping only the leading term of the
(w7)™ series, but still requires considering several
terms of 8 to be important. The resistivity com-
ponents may also be found by inversion. We shall
assume a sample and Fermi-surface geometry of
symmetry no lower than that of GER and MS. In
this case the resistivities for the transverse ef-
fects are given simply by

P11=011/ (05 +0%) , (Ta)
P21 =015/ (0% +°%z) (o)

for the magnetoresistivity p;; and Hall resistivity
Pas.

The details are given in Appendix B, taking for
an example the transverse magnetoresistivity and
the Hall resistivity in a single-band material, using
the parabolic model. The results are easily ex-
tended to a multiband uncompensated material. '3
After expanding in powers of (7)™, keeping leading
terms, and then expanding in 8™, the monotonic and
oscillatory parts of the resistivity are

Pr1=-p’wr(bpt - 6321, (8a)
Pr=-p°wr[E; 0 + (8- 2WENEH+...],  (8D)
Par=—p wT(1-bB2 +b% 1. 1) (8¢c)

Par=p°wr[E] B+ (26E 5+ ENB 4], (8d)
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where p°= (0% is the zero-field resistivity and b,
¢, and ¢, are defined by

T=b/(K+ip), (9a)

I=351,=@®eigH Y 6™, (9b)
q=1 n=2

é,= fi cled_gt izl (9c)
q=1

The coefficients ¢ arefound by applying Eq. (4) to
I=31,. We note that p(1) enters first via &,, and
p'(1) first via &;. Also, knowledge of b allows de-
termination of p(1) for given band geometry. Thus
it is possible to get p(1) from either a monotonic
term «B% or B!, or an oscillatory term « B2, In
a more general model there will also be a bulk term
«B%in p;;. However, p’(1) requires an oscillatory
term <B3,

At high fields, the first term in 0,,+43,, goes as
B™ at high fields, as in MS. However, what this
analysis shows in addition is that the anisotropy of
the surface scattering shows up as a contribution to
the oscillatory conductivity going as B-® through the
appearance of F/(1) which contains p’(1). In a mod-
el for the effect of surface roughness,  for a situa-
tion where the specularity parameter for normal
incidence is of an intermediate value, p(1)= 3, this
derivative is reasonably large. However, the view-
point of this kind of measurement should be to treat
(1) and p’(1) as unknown quantities to be deter-
mined. Later, the relationship to surface prepa-
ration may be considered.

The physical significance of the importance of
the apex (w=1) can be seen from the kinetic view-
point. At high fields only electrons traveling
nearly normal to the surface do not greatly increase
their trajectory due to spiraling about the magnetic
field. Thus, only these have a sufficiently small
probability of scattering internally to contribute to
the size effect, which is basically due to surface
scattering. The microwave absorption method com-
plements this one since there the angular variation
near grazing incidence is observed. 58

The two viewpoints presented each have advan-
tages and disadvantages. The “discrete-continuous”
view is easily adapted to arbitrary fields and gives
information about scattering at angles other than
normal incidence. However, it requires fitting
data by an integral rather than a few terms of a
series, Also, the present calculation is limited
to parabolic bands. The B! expansion allows using
the high-field region and the approach to high fields
to extract the surface scattering from the band-
dependent parts. It can be used with a somewhat
more general band model.

The main advantage of the second viewpoint is
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that it shows explicitly, if the band model is known,
how the specularity parameter and its angular de-
rivative at normal incidence can be deduced from a
study of the B dependence of the oscillatory con-
ductivity without preparing a new surface or reduc-
ing thickness.

The limitation to bands with rotational and in-
version symmetry, or even to the parabolic model
in the present calculations, may not necessarily
preclude application to real materials in certain
cases. Band calculations have shown that even
for a complicé.ted Fermi surface, having segments
in several zones, the free-electron model gives a
fairly good description for points in wave-vector
space which are not too close to a zone boundary.
For example, in Zn the third-band disk has a
largely free-electron curvature.!* If the magnetic
field and surface normal are parallel to normals
to such segments of the Fermi surface, the “ineffec-
tiveness” of other parts of the Fermi surface makes
at least the oscillatory conductivity amenable to
description by the simpler models.

III. EXPERIMENTAL EVIDENCE
FOR HIGHER-ORDER MMO

A. Comparison of Data to Theory

Results of measurements of MMO in the Hall re-
sistivity of a Cd crystal plate have been given by
Mackey, Sybert, and Fielder (MSF). A crystal,
originally spark machined, was electropolished
(100 u per surface) to remove the spark-damaged
layer. Additional planing and electropolishing were
used to produce various thicknesses. In one case,
abrasion was tried. The magnetic field and the
thin dimension were parallel to the ¢ axis.

The data are analyzed by using the high-field
approximation

P21 015 012, (10)
which is valid if p;; may be written as
p1=aBi (11)

This is true for the range of fields used and is to
be expected for a compensated metal. MSF make
the comparison to the theory as introduced in MS
by keeping only the leading term of the 8™! expansion,
From this, one predicts p, should oscillate as

sinB and have a constant amplitude. In fact, the
MSF data show a falling off of amplitude with 8 at
higher fields for the thinner samples. More puz-
zling, as mentioned by MSF, is that the phases of

the MMO are off by about 3 7 from the theory. This
would imply, if constant amplitude is assumed,

that §,, « cosB. Since the standard procedure of
field reversal and taking one-half the difference is

employed, this would violate the requirement that
0y must be odd in B. Similar behavior was re-
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ported recently in cylindrical Cd samples.

These apparent discrepancies are resolved if one
considers higher-order terms in the 8! expansion
to be important. The reported periods are close
to those predicted by the free-electron model.
Also, nearly-free-electron calculations have shown
the third-zone electrons to have nearly the free-
electron curvature for the limiting point.” On this

basis it will be assumed in the following analysis
that the local conductivity producing the MMO is
described by the free-electron model for a single
band of electrons (although 5,, should be described
by the general multiband compensated expression).
If one substitutes Eqs. (10) and (11) into Eq. (B3b),
it is easily seen that the high-field form (w7 > 1) of
p2; expanded in powers of B! may be written as



1884
pa=a;sin| B +a, (cos| B)/| B| + as(sin| 8] )/| B|*

+ay(cos| B|)/| B2+ -+, (12)

[The magnitude of B8 has been written to facilitate
comparison with experimental data. It will be as-
sumed that electrons are responsible for the MMO
so that B8 is negative. The coefficients of Eq. (12)
are affected accordingly.] The higher-harmonic
terms have been neglected, primarily on the basis
of visual inspection of the p,-vs-B8 curves. Further
justification of this will be discussed below.

A least-squares fit was performed using the first
three terms of Eq. (12). The results are shown in
Fig. 1. The coefficients are given in Table I. In
general, the fit is quite good for the thinner sam-
ples. For the thicker samples, presumably the
smaller signal-to-noise ratios are responsible for
a looser fit. However, in all cases the phase of
‘the data is fitted quite closely by Eq. (12), and in
most cases is close to that of cosf. Calculations
of @y, ay/|B|, and a,|BJF show that in most cases
the second term tends to be dominant. Thus it ap-
pears that it is the second-highest-order term
proportional to cosp/B that is responsible for both
the phase and the decreasing amplitude found in
much of the MSF data. This also preserves the
required odd symmetry.

It is of interest to see what values of p(1), p'(1),
and p"(l) follow from the empirically determined
coefficients. The analysis is carried out as an il-
lustration of the method. The results should be re-
garded as being of perhaps only qualitative signifi-
cance. However, it is felt that, being a first at-
tempt to apply the method, it is worthwhile following
through to the consequences.

In order to determine p(1), »'(1), and p” (1), the.
values of empirically determined coefficients of
Eq. (12) are related to the theoretical expression
(B3b), with multiplication by p ,%=a?()b%(#)8%, where
B=b(1) | B| converts from magnetic field to phase
variable. It would be desirable to determine the
value of a(f) empirically. However, these were
not available except for the thinnest sample. From
MSF Fig. 5, @(0.09)=102uQcm/kG?. It has
been found for Zn, which has a band structure very
similar to Cd, that the thickness dependence of p,,;
was fitted reasonably well by the semiempirical
expression

a(d) =a/(1+3/8K), (13)

although this is strictly based on a parabolic-band
model. ¥ This is employed here as a means for es-
timating a(f). The coefficients b(#) follow from the
periods A(#) by

b(d) = a(d) /2. (14)

The bulk conductivity was calculated, assuming local

Eq. (12).

Results of analysis of data of MSF (Ref. 18) according to

p"(1), and p"’(1) and the ratios of second-to-first harmonic amplitudes a

TABLE L

The resultant coefficients ay, a;, and a; are given with the resultant values of p(1),

The few cases resulting in imaginary p(1) are omitted.

(
i

@/ a?’ consistent with these values.
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0.103

aéz)/aél)

aéz’/aé”
0.364

a§2)/a{”
1.53

p"(l)
-1.78

'
0. 466

(1)
0. 865

a3(pQ cm)
—0.844

ay(pQ cm)
— 0, 0465

0.00203

Initial 8 G)7 No. of points ay (12 cm)
49 2

16
abraded
0.16
0.16
0.45
0.45

¢ (mm)

0.438
-14,30

—0.0794
—0.101

1.80
1.70
0,882
0.952
0. 896
0,636
0.240
0,228

7.98
4,18

84,2
120

—1.480
-1.35
-5.67
—6.08
—-5.87
—4.87
-7.57
-7.81

—-47.0
—24,2
—24.6
—-50.0
—-16.3
-10.3
-10.7
—10.6

0.883
0.877
0.800
0.812
0.803
0,743
0.561
0. 549
0.787
0.567
0.519
0.764
0.223
0.486
0.431
0.243

0. 0992

0.0636
0.0590
0.209
0.213
0.215
0.221

0,00153
0.00169
0.002¢1
0.00177
0.00195
0.00332
0.00212
0.00224

54
47

0.00310
—-1.62
-1.33
-1.59
-3.81

© —1.45

35
42

0. 0255
0. 0429
0. 0288
0.00279
—-0.0559
—0.0557

0. 0436
0.0474
0. 0452
0,0315
0.0167
0.0158
0.0531
0. 0249
0.0193
0. 0506
—0,0189

72

65
68

49

96.5

56
63

0.45
0.45
1.01

1.69
14,2

0.126
0.134

83
76

42

11.5

—-1.65
—1.44
—4.30
—4.97
—-0.712

—15,3

49

0.111
—0,0643
—0,0731

0.609

0.216
0.178
0.536

9.65x%103

776
667

0.190
0.192
0.216

0.223
0.214

0.000218
0.000897
0.00111

95
81

84
98

67

112
126

1.45
1.45
1.45

0.0514
—0.0338

10. 0%103

—492

53

0, 000265
0. 00289

0.0473
0.133
0.106

39
105

140
118
142

0,0178
0, 0497
—0.0246

0.00774
0.00265
—0.0172

357
200
-295

1.55
0.682

-3.21

0. 0376
0. 0429
0.0534

0. 000537
0.000659
0.00116

81

0.0452

57

166

leo
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applicability of the free-electron model:
o =ne®l/n kp, (15a)
n="k3/3n2 (15b)

The appropriate Fermi wave vector &z is 1.41 A
for Cd. Comparing the resultant expression for
Ds with Eq. (12),

a, = 3K(He¥[1- p(1)]%, (162)
a = - K(f)e ¥{3[1~ p(1)]2(9 + 2K)
+12[1-p(1) ]p"(D}, (16b)
ay =— K(f)e ™ (3[1 - p(1)]%(75+ 27K + 3K?)
+18[1- p(D]p"(1)(9 +2K) + 18{[»"(1)]?
+[1-p(D]p" (DY), (16c)

where K(f) =0®0®()b* (K. These can be solved for
(1), p'(1), and p” (1), the results being given in
Table I. In addition, these values can be used to
calculate the coefficients of the higher harmonics
to check whether their neglect is justified. The
second-harmonic expressions corresponding to
Eq. (16) are

a'P =3 K(de 1~ p(1)], )

a9 =4 K()e ™ (8{[ 1- p(1]2- 2[1- p(1]}5 (1)

- 3[1-p1)]p(D(9+4K)), (170)

a'? = = s K(He 28 (3[1 - p(1)]p(1)(75 + 54K + 12K?)

-9{[1-p(D]2=-2[1-p(D]p(D}p"(1)(9+4K)

+9{ [6p(1) - 4][p'(D]?

+[1-p(][1 -2p()]p" (VP . (17¢)

The numerical results are given in Table I. In
most cases the second harmonic is comparable to
the corresponding first harmonic only for the lead-
ing term. For the dominant second term it is usu-
ally much smaller. Neglecting second harmonics
may cause some error in the determination of p(1),
and therefore of »'(1) and »"(1) also. The relatively
large sizes of p(1) and p"(1) also restrict the accu-
racy of the expansion to small region about the
normal. Thus the remaining results of this analysis
must be considered as possibly only approximate.
A more involved analysis, using six equations,
would be required if the second harmonic is really
significant. Its relatively small contribution makes
it seem unlikely that it is.

The results for p(1), »'(1), and p"(1) show some
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degree of systematic thickness variation, in spite
of scatter and some nonmonotonic behavior. In
general, as the thicknesses are reduced, p(1) in-
creases somewhat, then remains relatively con-
stant. p'(1) is negative and decreases in magnitude
with diminishing ¢. " (1) is positive and decreases
by several orders of magnitude with reduction, In
the one case for the abraded sample, p(1) is neg-
ligibly changed, but p ‘(1) has become a small positive
quantity and »”(1) has also changed sign. A plot of
the specularity parameter versus angle for small
angles with respect to the normal, calculated from
the approximate expansion

plw) =p(1) +p"(D(w= 1) +3 p"(D)(w - 1)?, (18

is given in Fig. 2. Because of the possibly limited
region of validity, only the vicinity of the normal
is likely to be accurate.

B. Discussion of Possible Relation to the Nature of the Surface

Although more precision would be desirable, it
is possible to make some inferences as to the re-
lationship between the surface scattering near nor-
mal incidence and the nature of the surface region,

If the dominant mechanism for nonspecular sur-
face scattering is cancellation of scattered waves
caused by random tangentially uncorrelated surface-
position variations, the specularity parameter has
a predicted angular dependence of

- 2
p0) = T/w2 (19)
1.0
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FIG, 2. Typical angular variation of the specularity

parameter of Cd according to the data of MSF (Ref. 18),
for angles of incidence near the surface normal, using
Eq. (20). The expansion coefficients are from Table I.
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FIG. 3. Comparison of the angular dependence of the
specularity parameter (dashed curve) for the abraded
case of MSF (Ref. 17) with the predictions of the statis-
tical model (Ref. 4, solid curves). The abraded case is
obtained as in Fig. 3. The statistical model is from
Eq. (28). The roughness parameter is I'= (4mh/MN)?2,

where T =(47%/))%, & being the rms surface-height
variation and A the de Broglie wavelength, *

Figure 3 shows low-angle-of-incidence evaluations
of the statistical model, Eq. (19). In addition, the
analysis by Eq. (18) of the abraded case is shown
on the same graph. It is seen that, although no
unique I' describes this curve, the range of T is
relatively small, indicating at least approximate
agreement with the statistical model.

It is interesting to note that all other cases yield
a negative p’(1). This is inconsistent with the sta-
tistical model. Furthermore, for the thicker cases
£ (1) has a much larger magnitude than p(1)(< 2/e)
that would be expected from this model. Thus it

does not appear that the unabraded cases, especially

the thicker ones, can be explained by a model in
which the phase cancellation due to surface-height
variations plays a major role.

The negative sign of p'(1) along with its increasing
magnitude with ¢ suggests that a residual damage
layer may be more effective than true surface
scattering, especially in the thicker samples.
Damage due to spark planing to depths of 100 p have
been reported. 18 It is possible that the initial elec-
tropolishing of this magnitude still did not entirely
remove this layer, but that the additional 100 u per
surface removed for the thinner samples accounted
for most of it. In fact, —p'(1) shows a crudely ex-
ponential dependence ont - ¢, where f; is presum-
ably of the order of the undamaged thickness where-
as p(1) only increases slightly with diminished
thickness. The additional planing operations make
this analysis somewhat oversimplified, however.
The results suggest that presence of grain bound-
aries predominantly oriented perpendicular to the
surface may serve as tunneling barriers for wave-
vector components parallel to the surface with very
little effect on the components perpendicular to it.
The effect of abrasion may-have been to produce
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some surface annealing, recrystallization, or
other means of removal of residual-damage re-
gion, allowing more nearly true surface scattering
to show up. Also, in addition to the effect of fur-
ther planing, it is conceivable that electropolish-
ing may tend to propagate some of the damage
layer. Recent calculations have shown that grain-
boundary scattering may dominate true surface
scattering in polycrystalline thin films. ®

IV. SUMMARY AND CONCLUSIONS

It has been shown that the spectrum of the MMO
contains information about both the specularity pa-
rameter and its anisotropy. This can be extracted
if the band structure is known. The main advantage
of the approach is the lack of need for reproduc-
ibility in preparation of multiple samples or sur-
faces since p should be quite sensitive to small var-
iations of the latter.

Cd data is analyzed and shows the presence of
the higher-order terms that are needed to give in-
formation on angular dependence. The analysis,
to the extent that second-harmonic contributions
are negligible, points to a lack of true surface
scattering, possibly due to a residual spark-dam-
aged layer, except in an abraded sample.

These results indicate that this technique, for
studying conduction electron-surface scattering and
its relationship to surface preparation, appears
promising. Future work should emphasize care-
fully controlled surface preparation and the obser-
vation of the correlation between this preparation
and the resultant angular dependence of p. Also a
more involved analysis, including second harmonics
and still higher-order terms available from lower
fields, might lead to a more accurate determination
of p(w), extending to a larger angle from the normal.
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APPENDIX A

Equations (3) can be derived from Ea. (2c) by
direct application of the definitons of dirferentiation
and integration. However, it is easier to prove
that (3) reduces to (2¢). Integration by parts gives
for the second term in the brackets of (3), setting
qs =z,

Ja[wdw 5(zw)a£a‘;f}—wl
- [Fq(l)é’(zw)w:l . [ dw Fq(w)a—i(w—z”’)] .

Using the identity and recurrence relationship11



|

WZ—ZEM(ZW), n=1,2,3,...
where

Epy(zw) = (1/n)[e™*" - zwE,(zw)], n=1,2,3,..
it is straightforward to show

OE,(zw) _

-3 =5}, -zw
-\w " "—w " )e .
5 ( )

Substitution of this into J, and J into Egs. (3),
gives Eq. (2c).
APPENDIX B

Here we give a general expression for the com-
plex conductivity in the parabolic model in terms
of the inverse field-dependent quantities y=(wr)™?
and 6=8", Then assuming that

y<<6<1, (B1)

we work out the resistivity tensor for monotonic
and oscillatory field dependence as an expansion
in powers of the inverse field. Using the quanti-
ties defined by Eqs. (9), it can be shown that

o.=0% 1 -y2) —i+y-e®7f(5)], (B2)
where

F@)=£"(5) +if" (),

F(8)=b6+20 T, 0™,
n=2

DETERMINATION OF THE ANGULAR DEPENDENCE ... 1887

f"(5)= Z Z':I,GMI .
n=2

2iy

Expanding (1+y2)™ and e?7 gives

0 =0"v{=F'(6) +[1+27""(8)]v + 57" (8)y 2 4+ -} ,

2= 0% {-[1+77(6)]- 27" (8)y + [ 1 +5f"16)] v 2+ }.

Using the restriction of (B1), keeping only leading
terms of y, we have

oy = -f'(8)o%, (B3a)
o122 =[1+7"(6)]0% . (B3b)

These results can be extended to a multiband model
by summing over bands if there is no compensation.
For compensated bands, the leading Hall-conduc-
tivity term cancels and the results must be modi-
fied. This is easily done'® and is omitted here.
Inverting Eq. (10) and expanding in powers of §,

p11=—p2wT[06+2,8%+ T35+ -+ 1D(B)

Por=—p°wT[1+E, 8% +256%+-.. ]D()
where

D(6)=1-0%%-2¢,'6%+ (b*~2b ¢y~ 2C3)6%+... "
Multiplication and grouping of terms, and separating
monotonic and oscillatory parts, give Eqs. (8).
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